Nonparametric Regression with Spatially Dependent Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

Asymptotics of nonparametric L-1 regression models with dependent data.

We investigate asymptotic properties of least-absolute-deviation or median quantile estimates of the location and scale functions in nonparametric regression models with dependent data from multiple subjects. Under a general dependence structure that allows for longitudinal data and some spatially correlated data, we establish uniform Bahadur representations for the proposed median quantile est...

متن کامل

Strong convergence in nonparametric regression with truncated dependent data

AMS 2000 subject classifications: primary 62G07 secondary 62G20 a b s t r a c t In this paper we derive rates of uniform strong convergence for the kernel estimator of the regression function in a left-truncation model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. The estimation of the covariate's density is considered as well. U...

متن کامل

Nonparametric Regression with Spatial Data

Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance re‡ects spatial correlation. Conditional heteroscedasticity is also allowed, as well as non-identically distributed observations. Instead of mixing conditions, a (possibly non-stationary...

متن کامل

Regression With Spatially Misaligned Data

Suppose X(s) and 2(s) are stationary spatially autocorrelated Gaussian processes and Y(s) = β0 + β1X(s) + 2(s) for any location s. Our problem is to estimate the β’s, particularly β1, when X and Y are not necessarily observed in the same location. This situation may arise when the data are recorded by different agencies or when there are missing data values. A natural but näıve approach is to p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2010

ISSN: 1556-5068

DOI: 10.2139/ssrn.1480626